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A method for the numerical solution of the singular integral equations related to a 
vertical jet problem is developed. A jet flow from an aperture on the bottom of a large 
vessel fully filled with liquid, under gravity, has been studied. The problem has been 
programmed and run on a computer, and the computed results are shown. 

1. FORMULATION OF THE PROBLEM 

Consider a large rectangular vessel (see Fig. la) filled with water, with an aperture 
located at the center of its bottom. A jet issues downward from the aperture under 
gravity, with two free surfaces. Assume that the height of the vessel is h, and the half- 
width of the aperture b. The flow is assumed to be steady, two dimensional, inviscid, 
and incompressible, and the motion irrotational. The fluid motion is symmetric with 
respect to the center line BC, , and hence only half of the fluid region has to be 
considered (see Fig. 1 b). It has been shown by Carter [l] that the free streamlines 
should be asymptotic to this vertical line BC, . From the conservation of mass, the 
velocity far downstream from the aperture approaches infinity. We choose the origin 
of the xy-plane at the point E, the x-axis from left to right and the y-axis upward. 
Assume that the water surface on the top AB of the vessel is horizontal, and the 
velocity on it constant and equal to q1 . Let x1 be the half-width of the vessel. Further- 
more, we assume the velocity on DC is constant and equal to q2 , where D is a point 
some distance from the origin E and DC is a horizontal line. Let the length of DC 
be x2 . 

Let 4 be the velocity potential and 2c, the stream function. Let W = 4 f- i# and 
z = x + iy. Then dW/dz = qe-“O = u - iv. Now we map the fluid region ABCDEF 
in the z-plane onto the rectangle ABCDEF in the W-plane (see Figs. lb and 2). 

We introduce dimensionless variables 
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FIG. la. The physical plane for a 2-D vertical jet from a vessel. 
fit+. 1 b. Half of the physical plane for a 2-D vertical jet from a vessel. 

FIG. lc. Multiple jets from vessels. 

FIG. 2. The W-plane for a 2-D vertical jet from a vessel. 
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and then drop all the bars, for convenience. All variables hereafter are dimensionless. 
Note that q,, is the fluid speed at the origin E. The integral form of the free surface con- 
dition in these dimensionless variables is given by 

s d q3 + % sin e(t) dt = q03 == I, 
0 

where, in the dimensionless form, q. = 1 and Z& = 1. 
If all q’s on four sides of the rectangle ABCDEF, and 13 on the surface ED, have 

been computed, then the form of the free surface (x, u), the heights h, h, , and h, 
(see Fig. lb), the half-width b of the aperture, the half-width x1 of the vessel, the 
length x2 of DC, and other quainities may be computed. Here #Jo, & (and hence 
$1 = & + &), q1 , the velocity on AB, and q2 , the velocity on DC, are assumed to 
be given. From the conservation of mass, we have qlx, = qzxz = tjl = I. The two 
equations for computing x and y on the surface are 

x(4) = r,” cos B4’“’ dt along ED, 

(3) 

~(4) = lo’ ‘ln 84”) dt along ED. 

Thus 

b = XD + X2, 

(4) 
hz = -1’D , since xE = yE = 0. 

The height h (see Fig. lb) can be computed from 

r 61 1 =.Z __ d4 along BC, 
‘0 q(d) 

and hence 

h, = h - h, . (6) 

2. SOME OTHER SOLUTIONS 

Helmholtz (1868) and Kirchhoff (1869) investigate this problem for g = 0 (for the 
sources, see Lamb [4, pp. 75,961). They express the shape of the jet in terms of the 
half-width b of the aperture. They calculate the final breadth of the stream. between 
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the free surfaces, in terms of b, as 25-b/(2 + 7~), and hence the coefficient of contraction 
is 77/(2 + r) = 0.611. For further discussion, see Lamb [4, pp. 94-991. 

In Section 1 we mentioned that our solution will be formulated on the assumption 
that & , & , ql , and q2 are prescribed. This is an inverse problem. On the other hand, 
we might be interested in the solution when x1 , h, , and b are the given quantities. 
This can be done by applying the successive relaxation method to the Laplace equation 
a%,b/ax2 + a2#/ay2 = 0. The method will involve subdividing the whole fluid region 
and relocating the free surfaces. For more details, see Southwell and Vaisey [6]. 

3. CAUCHY INTEGRAL EQUATIONS 

Let r be a simple closed contour, taken in the positive sense (counterclockwise), 
such that the functionf(z) is analytic at every point on and inside I’. Then the Cauchy 
integral formula is 

%q(zo) = jr fg$ ) 

where z, is a point on I’ at which the slope of the tangent to r is continuous. 
Letf(z) = U(X, y) + iV(x, y) and z - z,, = pei”. Let s be the arc length along the 

contour r and n the inward unit normal to r. Then (7), after the real and imaginary 
parts are separated and integration by parts and the Cauchy-Riemann conditions 
are applied, becomes, with some simplifications, 

Equations (8) are of the same form as the equation of Jaswon [3, Eq. (IS)] known 
as Green’s boundary formula. 

4. NUMERICAL SOLUTION 

Let r be the rectangle ABCDEF in the W-plane in Fig. 2, and let & , & (and hence 
41 = $2 + 43)P 419 and q2 be known quantities. Divide each horizontal side of the 
rectangle into a number N (N is an even integer) of subintervals. Let h, be the length 
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of each subinterval, and $0) = -& , $1) = - +2 + h, ,..., x(j) z -& + jh, ,..., 
XcN) = +a the nodal points. Then (8) can be written as the discrete sums 

dJ(xo , y,) = - C i. a “fs’ ‘) In p ds + C s U(x, y) -$- ds, 
, ’ j Li 

(9) 

where (x0 , yo) (=(Co , #oN 1s a noncorner point on BC, AF, FE, or ED, a1 and a2 are 
angles shown in Fig. 2, and the integrals in (9) are ranged over pairs of subintervals 
(that is, j = 1, 3, 5,..., (N - 1)). We approximate each integral, except for those 
which contain a logarithmic singularity (explained later), by Simpson’s formula, 
that is, 

1, f(x) d.x = .(:;;+;‘,J(x) d.r 
c 

= + [f(x’j’ - h,) + 4f(x’j’) + f(x(j’ + h,)] + O(hz5), 

wheref(x) is any integrand of (9). 
Symm [5] assumes that U, V, au/as, aV/as are constants in each subinterval and 

approximates the integrals with remaining integrand. Hence the results Symm obtains 
are exact when U and V are constants; that is, it is a first-order approximation. 
Recall that Symm applies the numerical technique on equations derived by Jaswon [3], 
which are of the same form as (8). 

From now on, we write 

u = UC+, *I = u, 
v = V($, $b) = -v, 

(10) 

where u and v are components of the fluid velocity. Note that 8 = 0 on EF; 8 = - 7r/2 
on AB, CD, FA, and BC, and q = q1 and q = q2 on AB and CD, respectively. 
In terms of U and V, U = 0 on AB, BC, CD, and FA, and V = 0, q1 and q2 on EF, 
AB, and CD, respectively. 

One particular difficulty which appears in the computing procedure is the loga- 
rithmic singularity at W, = +. + ~L,!I~ in (9) when the interval contains W, . This is 
overcome by developing a formula using Maclaurin’s series and term-wise integration. 
The formula we obtain is 

= 2h,(ln 17, - I) (-$j,, + 7 (3 In h, - 1) (+I0 + O(hz5(5 In h,c - I)), 

(1’) 
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where the subscript 0 refers to the point (q$, , #,,). The same formula can be used for 

The derivatives @U/a& and (PU/@)>, are easily obtained using Taylor series 
expansions, 

60h, (+). = 45(u, - u-1) - g( u, - u-2) + (u, - u-3) + o&‘), 

8h,8 (2$), = - 13(U, - u-1) + 8(U, - u-8) - (U, - U-8) + O(hm’), (12) 

6Oh,($ = - 147U, + 36OU, - 45OU, + 400U8 - 225U, 

+ 72U, - lOU, + O(h*‘), 

8h,8 (go = -49U,, -j- 232U, - 46lU, + 496U, - 307U, 

+ mu, - ISU, + O(hz’), 

60hz($)o = - IOU-1 - 77U, + 150U, - lmu, + 50U, 

- 15U, + 2U, + Ws’), 

8h,8 (z& = -15U-l + 56U,-, - 83U, + 64U, - 29u, 

+ UJ, - v; + O(hz’), 

and 

60h, (+i). = 2U-m2 - 24u.q - 35u, 4- aou, - 3ou, 

+ 8U, - u, + O&‘), 

8h,8(+)o = -Urn2 - 8U..., + 35U,, - 48U, + 29U, 

- 8u, + u, + O(h;T’), 

where uj = Q(4, + .ih, , &J. 

(13) 

(14) 

(15) 
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The same formulas can be used for (aV/@),, and (a3V/a+3), . Note that formulas 
(12) are symmetric; (13), (14), and (15) are nonsymmetric; and (13) gives one-sided 
derivatives. 

We compute the derivatives of U and V (for a point on one side of the rectangle 
ABCDEF) using (12), or (13)-(15). Here we use (12) if we know all the necessary 
values of U or V (for a corner or points near a corner, this means we know the values 
of U or V outside the fluid region); otherwise (13)-(15) should be applied. When we 
use (12) for a corner point or points near a corner, we may need the values of V on 
AA”, BB”, CC” and DD”, and U on DD” (see Fig. 2), and U on FF” and Y on FF”’ 
(see Figs. la and b). However, we do not know V on AA”, BB”, and FF”’ (and hence 
we cannot use (12) here). For V on CC” and DD”, and U on DD”, we use the 
Lagrangian cubic-interpolation formula (see Froberg [2]). For U on FF”, we might 
consider we are dealing with multiple jets (see Fig. lc), so that U on FF” and the 
corresponding U on FF, have the same magnitudes but different signs. 

We estimate the initial values of U and V on all sides of the rectangle ABCDEF 
and start the Gauss-Seidel iterative procedure. We compute new values of V on BC, 
FA, and ED, and U on FE, using (9) (together with (11); note that (11) is applied 
for the case $,, = (2j - 1) h, , j = I, 2 ,..., N/2, we use 2h, instead of h, in (11) when 
& = 2jh, , j = 1, 2 ,..., N/2 - l), and evaluate all necessary derivatives of U and V 
using (12), or (13)-(15). From the free surface condition (2), we obtain a new 
(dimensionless) g, since in this case we take q = q2 and 4 = +3 in (2) (that is, we 
compute g using g = (1 - qs3)/(3 St3 sin(O(t)) dt)). Knowing g, we compute U on ED 
also, using (2), and evaluate the necessary derivatives of U using (12). We repeat the 
procedure until the successive approximations differ by a prescribed small number 
IO-“, e.g., k = 6. 

TABLE I 

41 = 0.025, q* = 1.11111 

3.8 29.19 0.86 1.45 0,047 0.721 
4.1 37.46 0.94 1.47 0.039 0.660 
4.4 48.66 1.02 1.50 0.031 0.608 

TABLE II 

qn = 1.11111 

0.025 40. 4.4 48.66 1.017 1.50 0.03 1 0.608 
0.0125 80. 4.5 67.074 1.044 1.502 0.02 0.592 
0.01 100. 4.6 80.61 1.07 1.51 0.016 0.577 
0.008 125. 4.65 91.56 1.085 1.512 0.013 0.570 
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TABLE III 

4% = 1.15 

Xl h, h, b qo+h g 

0.025 40 4.54 49.81 1.044 1.4787 0.032 0.6172 
0.0125 80. 4.65 65.00 I .060 1.4827 0.022 0.608 
0.01 loo. 4.7 77.78 1.089 1.4897 0.018 0.591 
0.008 125. 4.75 86.364 1.100 1.4923 0.015 0.584 
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FIG. 3. Shapes of jet near aperture E (when qa = 1 .l 1111). 

5. NUMERICAL RESULTS AND DISCUSSIONS 

It was mentioned above that we normalized the flux +I = 1 and the fluid speed 
at the origin E, q,, = 1. We may expect the iterative procedure outlined above to 
work well for q$ not too large (say q$ < lo), and q1 not close to 1 nor too small 
(say 0.0005 < ql < 0.026). When #1 is large or ql small, we have the jet flow with 
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vessel height h, large; and if ql approaches 1, vessel height h, ---f 0, hence we may not 
assume the velocity on the surface AB of the vessel to be constant. 

We fix & and q1 , and then compute h, , h, , h, b, x1, x2, x,/b, and qofh , where 
qofh is the fluid speed at the very first node near B on BC (see Figs. 1 and 2). For 
ql = 0.025 and q2 = 1.11111, Table I h s ows how & affects the solution. From the 
computed results, it shows that the vessel height h, and the half-width of the aperture b 
increase as fjl increases. For q2 = 1.11111 and q2 := 1.15, Tables 11 and III, 
respectively, show four different values of q1 with suitably chosen values of $r, and 
the corresponding values of other parameters. 

We use 29 points on each horizontal side of the rectangle and, in most cases, it 
requires only eight cycles to obtain up to three decimal places, and twenty cycles for 
six places. 

When successive approximations (of U and V) agree up to the desired number of 
decimal places, we compute the shape (x, y) of the free surface ED using (3). Figures 3 
and 4 show some such free surfaces. 
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FIG. 4. Shapes of jet near aperture E (when q2 = 1.15). 
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